Практическая работа 9

Вычисление производных сложных функций

Цель: закрепить навыки вычисления производных сложных функций

Оборудование (приборы, материалы, дидактическое обеспечение): методические рекомендации к выполнению работы; задание и инструкционная карта для проведения практического занятия

Компьютерные программы: компьютерные программы не используются

Содержание работы:

Основные понятия.

- 1 Производной функции f(x) называется $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$
- 2 Правила дифференцирования:

$$- (u \pm v)' = u' \pm v'$$

$$- (C \cdot u)' = C \cdot u'$$

$$- \qquad (u \cdot v)' = u' \cdot v + v' \cdot u$$

$$- \left(\frac{u}{v}\right)' = \frac{u' \cdot v - v' \cdot u}{v^2}$$

3 Таблица производных:

$$(C)' = 0$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}; \quad \alpha \neq -1; \quad \left(\frac{1}{x}\right)' = -\frac{1}{x^{2}}$$

$$- (a^{x})' = a^{x} \ln a$$

$$- (\ln x)' = \frac{1}{x}$$

$$- (\sin x)' = \cos x$$

$$- (tgx)' = \frac{1}{\cos^{2} x}$$

$$- (arcsin x)' = \frac{1}{\sqrt{1 - x^{2}}}$$

$$- (arctgx)' = \frac{1}{1 + x^{2}}$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}; \quad \alpha \neq -1; \quad \left(\frac{1}{x}\right)' = -\frac{1}{x^{2}}$$

$$(\log_{a} x)' = e^{x}$$

$$(\cos x)' = -\sin x$$

$$(ctgx)' = -\frac{1}{\sin^{2} x}$$

$$(arccos x)' = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$(arcctgx)' = -\frac{1}{1 + x^{2}}$$

- 4 Сложной функцией называется функция вида z = f(u(x)).
- 5 Производная сложной функции вычисляется по формуле z' = f'(u(x))u'(x).

- 6 Логарифмическое дифференцирование. Метод применяется для дифференцирования функций вида $y = u(x)^{v(x)}$ или громоздких функций:
- прологарифмировать функцию $\ln y = \ln u(x)^{v(x)} = v \cdot \ln u$;
- найти производную, учитывая, что y = y(x): $\frac{y'}{y} = v' \cdot \ln u + v \cdot \frac{u'}{u}$;
- выразить производную и подставить у: $y' = y \left(v' \cdot \ln u + v \cdot \frac{u'}{u} \right) =$

$$= u^{\nu} \left(v' \cdot \ln u + v \cdot \frac{u'}{u} \right)$$

Задания

- 1 Найти производные, используя правила дифференцирования.
- 2 Найти производные сложных функций.
- 3 Найти производную сложной функции, используя метод логарифмического дифференцирования.

Примеры выполнения:

Исходные данные:

Задание 1
$$y = 3x^4 + 4^x - \frac{1}{x} + arcctgx$$

Задание 2
$$y = (2x^3 - 3x^2)ctg4x$$

Задание 3
$$f(x) = \frac{x+6}{2x^2+9x-18}$$

Задание 4
$$y = \sqrt{\frac{\cos 4x + x^2}{4x}}$$

Задание 5
$$y = \sqrt{2tg^3 2x}$$

Задание 6
$$y = x^{cos x}$$

Решение:

Задание 1

Используя таблицу производных, найдем

$$y' = 3 \cdot 4x^3 + 4^x \ln 4 + \frac{1}{x^2} - \frac{1}{1+x^2} = 12x^3 + 4^x \ln 4 + \frac{1}{x^2} - \frac{1}{1+x^2}$$

Воспользуемся правилом нахождения производной произведения и таблицей производных:

$$y' = (6x^{2} - 6x)ctg4x - (2x^{3} - 3x^{2}) \cdot \frac{4}{\sin^{2} 4x} = \frac{6x(x - 1)ctg4x \sin^{2} 4x - 4x^{2}(2x - 3)}{\sin^{2} 4x} =$$

$$= \frac{6x(x - 1)ctg4x \sin^{2} 4x - 4x(2x - 3)}{\sin^{2} 4x} = \frac{6x(x - 1)\frac{\cos 4x}{\sin 4x} \sin^{2} 4x - 4x^{2}(2x - 3)}{\sin^{2} 4x} =$$

$$= \frac{3x(x - 1) \cdot 2\cos 4x \sin 4x - 4x^{2}(2x - 3)}{\sin^{2} 4x} = \frac{3x(x - 1)\sin 8x - 4x^{2}(2x - 3)}{\sin^{2} 4x} =$$

Задание 3

Воспользуемся правилом нахождения производной частного и таблицей производных:

$$f'(x) = \frac{2x^2 + 9x - 18 - (x+6)(4x+9)}{(2x^2 + 9x - 18)^2} = \frac{2x^2 + 9x - 18 - (4x^2 + 24x + 9x + 54)}{(2x^2 + 9x - 18)^2} = \frac{2x^2 + 9x - 18 - 4x^2 - 24x - 9x - 54}{(2x^2 + 9x - 18)^2} = \frac{-6x^2 - 24x - 72}{(2x^2 + 9x - 18)^2} = \frac{-6(x^2 + 4x + 12)}{(2x^2 + 9x - 18)^2}$$

Задание 4

Воспользуемся правилами нахождения производной сложной функции, частного и таблицей производных:

$$y' = \frac{1}{2\sqrt{\frac{\cos 4x + x^2}{4x}}} \cdot \frac{(-4\sin 4x + 2x)4x - 4(\cos 4x + x^2)}{16x^2} = \frac{\sqrt{x}}{\sqrt{\cos 4x + x^2}} \cdot \frac{2x^2 - 4x\sin 4x - \cos 4x - x^2}{4x^2}$$

$$= \frac{\sqrt{x}}{\sqrt{\cos 4x + x^2}} \cdot \frac{x^2 - 4x\sin 4x - \cos 4x}{4x^2} = \frac{x^2 - 4x\sin 4x - \cos 4x}{4x\sqrt{x(\cos 4x + x^2)}}$$

Задание 5

Воспользуемся правилом нахождения производной сложной функции и таблицей производных:

$$y' = \frac{1}{2\sqrt{2tg^3 2x}} \cdot 3 \cdot 2tg^2 2x \cdot \frac{1}{\cos^2 2x} \cdot 2 = \frac{3\sqrt{2tg 2x}}{\cos^2 2x}$$

$$1 \quad \ln y = \ln x^{\cos x} = \cos x \cdot \ln x$$

$$2 \frac{y'}{y} = (\cos x \cdot \ln x)' = (\cos x)' \cdot \ln x + \cos x \cdot (\ln x)' = -\sin x \cdot \ln x + \frac{\cos x}{x}$$

$$3 \quad y' = y \left(-\sin x \cdot \ln x + \frac{\cos x}{x} \right) = x^{\cos x} \left(-\sin x \cdot \ln x + \frac{\cos x}{x} \right) = x^{\cos x} \left(\frac{\cos x}{x} - \frac{x \sin x \cdot \ln x}{x} \right)$$
$$y' = x^{\cos x} \left(\frac{\cos x - x \sin x \cdot \ln x}{x} \right)$$

Задания к практической работе.

Задание 1

<u> </u>	I	1
$1 y = 4x^5 - \sin 2x + 5^x$	$2 y = 5x^6 - \cos 3x + 4^x$	$3 y = 7x^3 - tg2x + 3^x$
$4 y = 2x^7 + \log_2 4x + \arccos x$	$\int y = 2x^4 - \ln 3x + arctgx$	$\int_{0}^{\infty} 6^{-y} = 2x^4 - \log_5 2x + \arcsin x$
$7 y = 5x^3 - \cos 5x + 2^x$	$y = 2x^4 - \frac{1}{x} + \arcsin x$	$9 y = 9x^5 - \log_5 7x + \sin 4x$
$10 y = 6x^4 - \ln 4x + ctgx$	$11 y = 3x^6 - \arccos 4x - \sqrt{2x}$	$12 y = 2x^5 - ctg5x + 2^x$
13 $y = 4x^5 - \arcsin 2x + 2^x$	$14 y = 5x^2 - \cos 4x + 5^x$	$15 y = 2x^6 - \cos 4x + \sqrt{4x}$
$16 y = 2x^3 + \log_3 2x + \cos x$	$17 y = 4x^2 - \ln 3x + arcctgx$	$18 \ \ y = 2x^2 - \lg 2x + \sin x$
$19 \ \ y = 9x^3 - \sqrt{7x} + \sin 4x$	$20 y = \sin 2x + 4x^5 - 4^x$	$21 y = 2x^5 - tg4x + \sqrt{x}$
$22 y = 12x^2 - ctg 2x + 4^x$	$23 y = 7x^3 - \log_5 x + \sin 3x$	$24 \ \ y = 4x^2 - \lg x + \sqrt{3x}$
$25 y = 5x^3 - \ln 4x + \sqrt{2x}$	$26 y = \sqrt{2x} - ctg5x + 3^x$	$27 y = 3x^2 - \cos 3x - \sqrt{4x}$
$y = 2x^3 - \frac{1}{x} + \sin 3x$	$29 y = 2x^4 - \frac{1}{x} + \sqrt{4x}$	$30 y = 2x^5 - \frac{1}{x} + arcctgx$

$\int_{1}^{\infty} y = (5x^3 - x) \ln 4x$	$y = (1 + tg 2x) \cdot 4^x$	$y = (3x^2 - 5x - 8)\sqrt{4x}$
$4 y = \left(x - \frac{1}{x}\right) \cdot arcctgx$	$5 y = (\sin 2x + 2\cos x)4^x$	$6 y = (x^3 - 3x^2 + 1) \ln x$
7 $y = (2x^5 - 3x - 1)ctg5x$	$8 y = (3x^2 + 5x - 1)\sqrt{2x}$	9 $y = (2x^4 + x^2 - 1)\frac{1}{x}$
$10 y = ctg5x \cdot \left(2^x + 3^x\right)$	$11 y = \left(x - \frac{1}{x}\right) \cdot arctgx$	12 $y = (4x^2 - 3x) \ln 3x$

13 $y = (2x^3 + 7x^2 + 5) \ln 3x$	$14 y = \sin 2x \left(4x^5 - x^3 + x \right)$	$15 \ \ y = (2x^2 + 3x - 8)\sqrt{x}$
$16 \ y = tg 2x \left(4x^4 - x^3 + 3x\right)$	$17 \ y = (7x^3 + 3x - 4)\log_5 x$	18 $y = (2x^5 - 5x^2 + x)\frac{1}{x}$
$19 y = \left(2x^5 - \frac{1}{x}\right) \operatorname{arcctgx}$	$20 \ y = \left(x + \frac{1}{x}\right) \cdot arctgx$	$21 y = (3^x - 2^x)\sqrt{2x}$
$22 y = (5x^2 + 3x) \ln x$	$23 y = tg2x \cdot \left(x^3 - 4x^2 + x\right)$	$24 \ y = \left(x - \frac{1}{x}\right) \cdot tgx$
$25 \ \ y = (x^2 + 5x - 1)\sqrt{x}$	$26 y = (3x^2 + 5x - 1)\sqrt{x}$	$27 \ \ y = (2x^3 - 3x^2 + 1)\ln 3x$
$28 y = \left(3x^3 - 2x\right) \ln x$	$29 y = tg2x \cdot \left(2^x + 5^x\right)$	$30 \ y = tg 3x (3x^4 - 2x^3)$

$f(x) = \frac{x^2 - 25}{x - 5}$	$f(x) = \frac{x+3}{x^2-9}$	$f(x) = \frac{x^2 + x - 2}{x - 1}$
$f(x) = \frac{\cos x}{x}$	$f(x) = \frac{x^3 - 27}{x - 3}$	$f(x) = \frac{x^2 - 9}{x + 3}$
$f(x) = \frac{2x^2 - 5x + 3}{x - 1}$	$f(x) = \frac{x-1}{x^2-1}$	$f(x) = \frac{x^2 - 5x + 6}{x - 2}$
$f(x) = \frac{x+2}{x^3+8}$	$f(x) = \frac{x+1}{2x^2 + 7x + 5}$	$f(x) = \frac{x+3}{x^2 - 9}$
$f(x) = \frac{x+1}{x^3+1}$	$f(x) = \frac{x^3 - 8}{x - 2}$	$f(x) = \frac{x^2 - 4}{x + 2}$
$f(x) = \frac{x-2}{x^3 - 8}$	$f(x) = \frac{3x^2 - 11x + 6}{x - 3}$	$f(x) = \frac{\cos 3x}{2x}$
$f(x) = \frac{x^2 - 9}{x^2 + 3x}$	$f(x) = \frac{x^2 + 6x - 7}{x + 7}$	$f(x) = \frac{x-2}{3x^2 - 5x - 2}$
$f(x) = \frac{4x^2 + 7x - 2}{x + 2}$	$f(x) = \frac{x^2 - 4}{x - 2}$	$f(x) = \frac{x-4}{3x^2 - 11x - 4}$
$f(x) = \frac{x^2 + 3x}{x^2 - 9}$	$f(x) = \frac{x+3}{5x^2 + 14x - 3}$	$f(x) = \frac{x+4}{x^3+64}$
$f(x) = \frac{3x^2 + 8x - 3}{x + 3}$	$f(x) = \frac{x+4}{x^2 - 16}$	$f(x) = \frac{x+6}{2x^2+9x-18}$

$y = \sqrt{\frac{x^2 - 9}{x + 4}}$	$y = \sqrt{(1 + tg 2x) \cdot 4^x}$	$y = \sqrt{(2x^3 + 7x^2 + 5)\ln 3x}$
$4 y = \sqrt{2x^2 \cdot \lg 2x}$	$y = \sqrt{\frac{3^x + x}{x^3 + 64}}$	$y = \ln\left(\frac{x^2 - 3x}{x + 1}\right)$
$y = \left(\frac{3x^2 - 11x + 6}{x - 3}\right)^4$	$y = \left(\frac{\cos 3x}{2x}\right)^3$	$y = \sqrt{\frac{3x+5}{2x^2+9x-18}}$
$y = \sqrt{\frac{2^x + 5x}{2x^3 + 1}}$	$11 y = \sqrt{(5x^3 - x)\ln 4x}$	$12 y = \sqrt{(1 + ctg 2x) \cdot 2^x}$
$y = \sqrt{\frac{\sin 5x}{3x^2}}$	$y = \sqrt{\frac{3x^2 - 2x}{4x + 1}}$	$y = \ln\left(\frac{x^2 - 4x}{x + 1}\right)$
$y = \ln\left(\frac{3x^2 - 2x}{4x + 1}\right)$	$17 y = \ln\left(\left(2x^2 + 3x\right)\sqrt{x}\right)$	$y = \sqrt{\frac{\cos 3x}{2x}}$
$19 y = \sqrt{(2x^2 + 3x)arctgx}$	$y = \sqrt{\frac{2^x + 3x}{5x^2 + 14x - 3}}$	$y = \left(\frac{\ln 3x}{2x}\right)^3$
$y = \sqrt{\frac{\sin 2x}{5x}}$	$y = \sin\left(\frac{x^2 - 3x}{x + 1}\right)$	$24 y = \sqrt{(2x^5 + 7x + 5)\ln 2x}$
$25 y = \left(\frac{\cos 3x + x}{4x}\right)^3$	$26 y = \left(2x^2 \cdot \lg 2x\right)^3$	$y = \ln\left(\frac{2^{x} + 3x}{5x^{2} + 14x - 3}\right)$
$28 y = \cos((5x^3 - x)\ln 4x)$	$y = \sqrt{\frac{\ln 4x}{3x}}$	$y = \sqrt{\frac{\cos 3x + x}{4x}}$

$\int_{1}^{\infty} y = \sin^3 \sqrt{2x}$	$2 y = \ln^4 \cos 5x$	$3 y = \ln^4 (5x^3 - 2x + 6)$
$4 y = tg^4 3x$	$5 y = \sqrt{4\sin x^2}$	$6 y = ctg^4 2x$
$7 y = \sqrt{\ln \cos 5x}$	$8 y = \ln^2 \sin 2x$	$9 y = \sqrt{ctg\left(x^2 - 3x + 11\right)}$
$10 y = \ln^3 \sin 2x$	$11 y = \sqrt{\ln(5x^3 - 2x + 6)}$	$12 y = \sqrt{tg3x}$
13 $y = \sqrt{ctg(3x^2 + 2x + 14)}$	$14 y = tg^3 (2x^2 + x + 11)$	$15 y = \ln^2 \sin 3x$
$16 y = \ln \sqrt{\cos 3x}$	$17 y = \sqrt{\ln \sin 2x}$	$18 y = \sqrt{\ln \cos 5x}$
19 $y = ctg^3(x^2 - 3x + 11)$	$20 y = \ln^3 \sin 4x$	$21 y = \ln t g^2 3x$

$22 y = \ln ctg^2 3x$	$23 y = \sqrt{ctg2x}$	$24 y = \ln^3 (3x^2 + 2x + 14)$
$25 y = \sqrt{\ln(3x^2 + 2x + 14)}$	$26 y = \ln \sqrt{\sin 3x}$	$27 y = \sqrt{tg(2x^2 + x + 11)}$
$28 y = \sqrt{ctg^5 2x}$	$29 y = \sqrt{tg^3 x}$	$30 y = \sqrt{2ctg^3 x}$

$1 y = \left(x^2 + \sqrt{x}\right)^{\cos x}$	$2 y = \left(\sin\sqrt{x}\right)^{\ln 5x}$	$3 y = (ctg2x)^{\ln 4x}$
$4 y = \left(\sqrt{4x^2 - 4x}\right)^{\ln 2x}$	$5 y = (tgx)^{\sin x}$	$6 y = (5x^3 - 2x + 6)^{\ln 3x}$
$7 y = (\cos 5x)^{3x^2 - 4x + 1}$	$8 y = (3x^4 - 4x + 5)^{\sin 2x}$	9 $y = (x^2 - 3x + 11)^{rtg \ 2x}$
$10 y = (\sin 3x)^{\ln 2x}$	11 $y = (5x^3 - 2x + 6)^{\ln x^2}$	$12 y = (4x^3 - 3x)^{yg^{3x}}$
13 $y = (2x^2 + x + 11)^{\ln(x^2 - x)}$	$14 y = (3x^2 + 2x + 14)^{\sin 3x}$	$15 y = \left(arctgx\right)^{\sqrt{x^2 - 5x}}$
$16 y = (x^2 - 3x + 11)^{\sin 3x}$	$17 y = (\sin 4x)^{\ln^3 x}$	18 $y = (x^2 - \cos 5x)^{3x^2 - 4x + 1}$
$19 \ y = \left(\sin\sqrt{x}\right)^{\cos 5x}$	$20 y = (\sin 2x)^{\sqrt{\ln x}}$	$21 y = (2x^4 - 3x + 4)^{\sin 4x}$
$22 y = (4x^3 - 6x)^{a_g 3x}$	$23 \left(x^2 - 10\right)^{g\left(2x^2 + x + 11\right)}$	$24 y = (3x^2 + 2x + 14)^{\ln^2 x}$
$25 y = \left(\sqrt{tgx}\right)^{\sin\left(x^2 - 2x\right)}$	$26 y = (4x^3 - 3x + 1)^{\ln 4x}$	$27 y = (4x^2 - 4x)^{\ln 3x}$
$28 y = (x^3 - 3x + 6)^{\ln x^2}$	29 $y = (x^2 + 7x - 6)^{\ln(x^3 - 3x)}$	$30 y = (3x^2 - 4x + 17)^{\sin 2x}$

Порядок выполнения задания, методические указания: - ознакомиться с теоретическими положениями по данной теме; - изучить схему решения задач; - выполнить задания практической работы; - сформулировать вывод

Содержание отчета: отчет по практической работе должен содержать: основные определения, рассуждения по решению задач, необходимые вычисления, ответ, вывод по работе

Контрольные вопросы:

- 1 Что называется производной функции?
- 2 Сформулируйте правила дифференцирования.
- 3 Что такое сложная функция?
- 4 Как найти производную сложной функции?

- 5 В каких сучаях используется метод логарифмического дифференцирования?
 - 6 В чем суть метода логарифмического дифференцирования?

Литература:

- 1 Ю.М.Колягин Математика в 2-х книгах, учебник для СПО, 2008, книга 2
- 2 И.Л.Соловейчик Сборник задач по математике для техникумов, -М, 2003
- 3 В.П. Омельченко, Э.В. Курбатова Математика. Учебное пособие для студентов образовательных учреждений среднего профессионального образования, г.Ростов-на-Дону, «Феникс», 2012
- 4 http://ru.wikipedia.org
- 5 http://www.mathprofi.ru
- 6 http://www.cleverstudents.ru
- 7 http://www.webmath.ru/poleznoe
- 8 http://www.cleverstudents.ru
- 9 http://www.math24.ru/logarithmic-differentiation.html
- 10 http://www.allmath.ru/highermath/mathanalis/limits/limits1.htm