Практическая работа 11

Полное исследование функции и построение графика

Цель: закрепить навыки исследования функций и построения графиков

Оборудование (приборы, материалы, дидактическое обеспечение): методические рекомендации к выполнению работы; задание и инструкционная карта для проведения практического занятия

Компьютерные программы: компьютерные программы не используются **Содержание работы:**

Основные понятия.

- 1 Областью определения функции y = f(x) (выражения f(x)) называют множество всех значений x, для которых функция (выражение) имеет смысл. Область определения функции y = f(x) обозначается как D(y) или D(f(x)).
 - 2 На наличие ограничений области определения указывает:
- присутствие корней четной степени вида $\sqrt[n]{f(x)}$, где n четное, например, $\sqrt{x+1}$ (наличие степенной функции с дробным показателем, знаменатель которого есть четное число, например, $(x^2+x-6)^{\frac{5}{4}}$);
- присутствие функции логарифма вида $\log_a(f(x))$, например, $\ln(x^3+1)$ или $\log_x(x^2-3)$;
 - присутствие дробей вида $\frac{f(x)}{g(x)}$, например, $x + \frac{2x}{x^4 1}$;
- присутствие функций тангенса вида tg(f(x)) и котангенса вида ctg(f(x)), например, $x^2 + tg(2x)$ или $ctg(3x^3 1)$;
- присутствие функций арксинуса вида $\arcsin(f(x))$ и арккосинуса вида $\arccos(f(x))$, например, $\arcsin(x+2)$ или $\arccos(x^2)$;
- присутствие показательно степенных функций вида $(f(x))^{g(x)}$, например, $x^{\cos(x+3)}$;
 - присутствие любых комбинаций всех вышеперечисленных случаев
- 3 Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения $x \in D(f)$. Область значений функции обозначают как E(f).
- 4 Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:
- а) область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка а принадлежит области опре-

деления функции, то соответствующая точка -а тоже должна принадлежать области определения заданной функции;

- б) значение функции в точке x, принадлежащей области определения функции должно равняться значению функции в точке -x, то есть для любой точки x, из области определения функции должно выполняться следующее равенство f(x) = f(-x)
- 5 Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:
- а) область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка а принадлежит области определения функции, то соответствующая точка -а тоже должна принадлежать области определения заданной функции;
- б) для любой точки x, из области определения функции должно выполняться следующее равенство f(x) = -f(x)
- 6 График четной функции симметричен относительно оси Оу, график нечетной функции симметричен относительно точки О начала координат.
- 7 Прямая $x = x_0$ называется вертикальной асимптотой графика функции y = f(x), если хотя бы одно из предельных значений $\lim_{x \to x_0 = 0} f(x)$ или $\lim_{x \to x_0 + 0} f(x)$ равно $+\infty$ или $-\infty$.
- 8 Прямая $x=x_0$ не может быть вертикальной асимптотой, если функция непрерывна в точке $x=x_0$. Поэтому вертикальные асимптоты следует искать в точках разрыва функции.
- 9 Прямая $y = y_0$ называется горизонтальной асимптотой графика функции y = f(x), если хотя бы одно из предельных значений $\lim_{x \to +\infty} f(x)$ или $\lim_{x \to +\infty} f(x)$ равно y_0 .
- 10 График функции может иметь только правую горизонтальную асимптоту или только левую.
- 11 Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x), если $\lim_{x \to \infty} |f(x) kx b| = 0$
- 12 Если для функции y = f(x) существуют пределы $\lim_{x \to \infty} \frac{f(x)}{x} = k$ и $\lim_{x \to \infty} |f(x) kx| = b$, то функция имеет наклонную асимптоту y = kx + b при $x \to \infty$.
- 13 Если производная функции положительна на некотором промежутке, то на этом промежутке функция возрастает, если на некотором промежутке производная функции отрицательна, то функция то на этом промежутке убывает.
- 14 Если в некоторой окрестности точки x_0 выполняется неравенство $f(x) \le f(x_0)$, то точка x_0 называется точкой максимума функции f(x).

- 15 Если в некоторой окрестности точки x_0 выполняется неравенство $f(x) \ge f(x_0)$, то точка x_0 называется точкой минимума функции f(x).
- 16 Точки максимума и минимума называются точками экстремума функции.
- 17 Необходимое условие экстремума: если x_0 точка экстремума функции f(x), то в этой точке производная функции равна нулю или не существует.
- 18 Достаточное условие экстремума: если при переходе через точку, подозрительную на экстремум, производная не изменяет знак, то экстремума в этой точке нет, если производная меняет знак с «минуса» на «плюс», то x_0 точка минимума, если с «плюса» на «минус», то x_0 точка максимума.
- 19 Точка x_0 называется точкой перегиба графика функции, если функция в этой точке определена, и по разные стороны от этой точки имеет разные направления выпуклости.
- 20 Если вторая производная функции положительна, то функция выпукла вверх, если вторая производная отрицательна, то функция выпукла вниз.
- 21 Необходимое условие точки перегиба графика функции: вторая про-изводная функции в этой точке равна нулю или не существует.
- 22 Достаточное условие точки перегиба графика функции: при переходе через точку, подозрительную на перегиб, вторая производная меняет знак.

Задания

- 1 Найти область определения и область значения функции
- 2 Выяснить симметрию графика функции (чётность, нечётность, периодичность)
 - 3 Выяснить периодичность функции
- 4 Найти точки пересечения графика функции с осями координат, полагая вначале x = 0, а затем решая уравнение y = 0
- 5 Найти точки разрыва, вертикальные, горизонтальные и наклонные асимптоты
 - 6 Найти интервалы возрастания, убывания и экстремумы функции
 - 7 Найти интервалы выпуклости, вогнутости, точки перегиба
- 8 Построить дополнительные точки и график функции по результатам исследования

Пример выполнения:

Исходные данные:

Исследовать функцию $y = \frac{x^2}{x+1}$ и построить график.

Решение:

1 Функция не существует, если знаменатель равен нулю, значит $x+1 \neq 0 \Rightarrow x \neq -1$

$$D(f)=(-\infty;-1)\cup(-1;+\infty)$$

$$(2 y(-x)) = \frac{(-x)^2}{-x+1} = \frac{x^2}{-x+1} \neq y(x)$$
 Функция не является чётной.

$$y(-x) = \frac{x^2}{-x+1} = -\left(\frac{x^2}{x-1}\right) \neq -y(x)$$
 Функция не является нечётной.

- 3 Функция не периодическая.
- 4 График функции пересекает оси координат в единственной точке (0;0), т.к. $y\left(0\right)=0$

5 а) Находим наклонные асимптоты
$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x}{x+1} = \lim_{x \to \pm \infty} \frac{1}{1+\frac{1}{x}} = 1$$
,

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \left[\frac{x^2}{x+1} - x \right] = \lim_{x \to \pm \infty} \frac{x^2 - x^2 - x}{x+1} = \lim_{x \to \pm \infty} \frac{-1}{1 + \frac{1}{x}} = -1.$$

При $x \to +\infty$ и при $x \to -\infty$ график имеет наклонную асимптоту y = x - 1.

- б) При $x \to -1-0$ $y \to -\infty$; при $x \to -1+0$ $y \to +\infty$. Следовательно, прямая x = -1- вертикальная асимптота.
- в) Для нахождения горизонтальной асимптоты найдем $\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{x^2}{x+1}=\lim_{x\to\pm\infty}\frac{x}{1+\frac{1}{x}}=\pm\infty$ Следовательно, горизонтальная асимптота от-

сутствует.

6 Находим интервалы возрастания, убывания и экстремумы функции, используя первую производную: $y' = \frac{x(x+2)}{(x+1)^2}$, y' = 0 при $x_1 = -2$, $x_2 = 0$;

y' не существует при x=-1, но точка x=-1 не принадлежит области определения, поэтому и не является критической для данной функции.

х	$(-\infty,-2)$	-2	(-2,-1)	-1	(-1,0)	0	$(0,+\infty)$
y'	+	0	-	не сущ	-	0	+
у	▼	max	/	не сущ	1	min	*

7
$$y_{\text{max}} = y(-2) = -4$$
; $y_{\text{min}} = y(0) = 0$.

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2}{x+1} = \lim_{x \to \pm \infty} \frac{x}{1+\frac{1}{x}} = \pm \infty \quad \Rightarrow \quad E(f) = (-\infty; -4] \cup [0; +\infty)$$

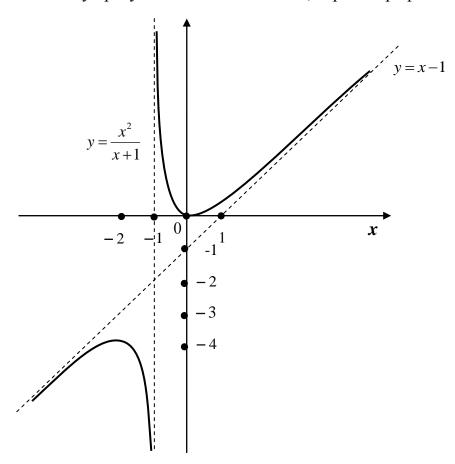
8 Находим интервалы выпуклости, вогнутости, точки перегиба, используя вторую производную:

$$y'' = \frac{2}{(x+1)^3}, \quad y'' \neq 0$$
;

y'' не существует при x=-1, но точка x=-1 не принадлежит области определения. Следовательно, точек перегиба нет. При $-\infty < x < -1$ y'' < 0 и график функции выпуклый, а при $-1 < x < +\infty$ y'' > 0 график функции вогнутый.

х	$(-\infty,-1)$	-1	$(-1,+\infty)$
y"	-	не сущ	+
y	C	не сущ))

9 Используя результаты исследования, строим график.



Задания к практической работе.

1 $y = \frac{x^2 + 3x - 4}{x + 1}$	$2 y = \frac{3x-1}{r}$	$y = \frac{3}{x^2 - 4}$
x+1	\mathcal{X}	x - 4

$4 y = \frac{2x^2 - 3x}{x - 2}$	$5 y = x + \frac{2}{x} - \frac{3}{x^2}$	$6 y = \sqrt[3]{1 - x^3}$
$7 y = \frac{x}{x+2}$	$8 y = \frac{x^2}{x^2 + 3}$	$9 y = \frac{x^2 + x - 6}{x - 1}$
$10 y = \frac{x^3}{2(x+5)^2}$	$11 y = \frac{2x - 3}{x}$	$12 y = \frac{x^2 - 1}{x}$
13 $y = \frac{x^3 + 8}{x^2}$	$14 y = \frac{x^3 + 1}{x^2}$	$15 y = \frac{x}{x - 5}$
$16 y = \frac{5}{x^2 - 1}$	$17 y = x + \frac{3}{x} - \frac{4}{x^2}$	18 $y = \frac{x^3}{x^2 - 1}$
$19 y = 3\sqrt[3]{x} - x$	$20 y = \frac{x^3}{(x-2)^2}$	$21 y = \frac{x^2 + 3x - 4}{x - 2}$
$22 y = \frac{x^3}{x^2 - 4}$	$23 y = \frac{x^3 + 8}{x^2 - 1}$	$24 \ \ y = \frac{x^3 - 1}{4x^2}$
$25 y = \frac{x}{x+3}$	$26 \ \ y = \frac{x^2 + 3x - 4}{x + 2}$	$27 y = \frac{x^3 + 27}{x^2}$
$28 y = \frac{x^3 + 8}{x^2 - 9}$	$29 y = \frac{x^3 - 27}{x^2}$	$30 y = \frac{x^2 - 7x + 12}{x - 1}$

Порядок выполнения задания, методические указания: - ознакомиться с теоретическими положениями по данной теме; - изучить схему решения задач; - выполнить задания практической работы; - сформулировать вывод

Содержание отчета: отчет по практической работе должен содержать: основные определения, рассуждения по решению задач, необходимые вычисления, ответ, вывод по работе

Контрольные вопросы:

- 1 Что такое и как обозначается область определения функции?
- 2 Ограничения области определения функции
- 3 Что такое и как обозначается область значений функции?
- 4 При каких условиях функция является четной?
- 5 При каких условиях функция является нечетной?
- 6 Графики четных и нечетных функций
- 7 Что такое вертикальная асимптота?
- 8 При каких значениях аргумента существует вертикальная асимптота?
- 9 Что такое горизонтальная асимптота?

- 10 Что такое наклонная асимптота?
- 11 Условие существования наклонной асимптоты
- 12 Условия возрастания и убывания функции
- 13 Что такое максимум функции?
- 14 Что такое минимум функции?
- 15 Что такое экстремум функции?
- 16 Необходимое условие существования экстремума функции
- 17 Достаточное условие существования экстремума функции
- 18 Что такое точка перегиба графика функции?
- 19 Необходимое условие точки перегиба графика функции
- 20 Достаточное условие точки перегиба графика функции
- 21 Условия выпуклости графика функции

Литература:

- 1 Ю.М.Колягин Математика в 2-х книгах, учебник для СПО, 2008, книга 2
- 2 И.Л.Соловейчик Сборник задач по математике для техникумов, -М, 2003
- 3 В.П. Омельченко, Э.В. Курбатова Математика. Учебное пособие для студентов образовательных учреждений среднего профессионального образования, г.Ростов-на-Дону, «Феникс», 2012
- 4 http://ru.wikipedia.org
- 5 http://www.nado5.ru/e-book/chetnye-i-nechetnye-funkcii
- 6 http://www.cleverstudents.ru
- 7 http://www.webmath.ru/poleznoe
- 8 http://dic.academic.ru/dic.nsf/bse/150204
- 9 http://www.matburo.ru/ex_ma.php?p1=maissl
- 10 http://www.allmath.ru/highermath/mathanalis/limits/limits1.htm